65 research outputs found

    Interleukin-10 and soluble tumor necrosis factor receptor II are potential biomarkers of Plasmodium falciparum infections in pregnant women: a case-control study from Nanoro, Burkina Faso.

    Get PDF
    BACKGROUND: Diagnosis of malaria in pregnancy is problematic due to the low sensitivity of conventional diagnostic tests (rapid diagnostic test and microscopy), which is exacerbated due to low peripheral parasite densities, and lack of clinical symptoms. In this study, six potential biomarkers to support malaria diagnosis in pregnancy were evaluated. METHODS: Blood samples were collected from pregnant women at antenatal clinic visits and at delivery. Microscopy and real-time PCR were performed for malaria diagnosis and biomarker analyses were performed by ELISA (interleukin 10, IL-10; tumor necrosis factor-α, TNF-α; soluble tumor necrosis factor receptor II, sTNF-RII; soluble fms-like tyrosine kinase 1, sFlt-1; leptin and apolipoprotein B, Apo-B). A placental biopsy was collected at delivery to determine placental malaria. RESULTS: IL-10 and sTNF-RII were significantly higher at all time-points in malaria-infected women (p < 0.001). Both markers were also positively associated with parasite density (p < 0.001 and p = 0.003 for IL-10 and sTNF-RII respectively). IL-10 levels at delivery, but not during pregnancy, were negatively associated with birth weight. A prediction model was created using IL-10 and sTNF-RII cut-off points. For primigravidae the model had a sensitivity of 88.9% (95%CI 45.7-98.7%) and specificity of 83.3% (95% CI 57.1-94.9%) for diagnosing malaria during pregnancy. For secundi- and multigravidae the sensitivity (81.8% and 56.5% respectively) was lower, while specificity (100.0% and 94.3% respectively) was relatively high. Sub-microscopic infections were detected in 2 out of 3 secundi- and 5 out of 12 multigravidae. CONCLUSIONS: The combination of biomarkers IL-10 and sTNF-RII have the potential to support malaria diagnosis in pregnancy. Additional markers may be needed to increase sensitivity and specificity, this is of particular importance in populations with sub-microscopic infections or in whom other inflammatory diseases are prevalent

    Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study

    Get PDF
    BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens

    CoartemÂź: the journey to the clinic

    Get PDF
    Artemisinin, from which the artemether component of CoartemÂź(artemether/lumefantrine, AL) is derived, is obtained from the plant sweet wormwood (Artemisia annua) which has been used for over 2,000 years as a Chinese herbal remedy. Artemisinin was first identified by Chinese researchers as the active anti-malarial constituent of A. annua and its derivatives were found to be the most potent of all anti-malarial drugs. Artemether acts rapidly, reducing the infecting parasite biomass by approximately 10,000-fold per asexual life cycle. Lumefantrine, the other active constituent of AL, acts over a longer period to eliminate the residual 100-100,000 parasites that remain after artemether is cleared from the body and thus minimizes the risk of recrudescence. The two agents have different modes of action and act at different points in the parasite life cycle and show a synergistic action against Plasmodium falciparum in vitro. The combination of artemether and lumefantrine reduces the risk of resistance developing to either agent, and to date there are no reports of resistance to AL combined therapy in the malaria parasite that infects humans. Following a unique partnership agreement between Chinese authorities and Novartis, the manufacturer of AL, over 20 sponsored clinical studies have been undertaken in various malaria endemic regions and in travellers. These trials have involved more than 3,500 patients (including over 2,000 children), and led to identification of a six-dose, three-day regimen as the optimal dosing strategy for AL in uncomplicated falciparum malaria. AL has consistently shown 28-day polymerase chain (PCR)-corrected cure rates greater than 95% in the evaluable population, meeting WHO recommendations. More recently, Novartis and the Medicines for Malaria Venture have worked in partnership to develop CoartemÂź Dispersible, a new formulation designed specifically to meet the specific needs of children with malaria. The dispersible tablets have shown similar high response rates to those observed with crushed standard tablets of AL. A partnership agreement between Novartis and WHO has seen over 250 million AL (CoartemÂź) treatments (75% for children) being distributed to malaria patients in developing countries without profit, supported by training programmes and educational resources

    A Novel Quantum Dots–Based Point of Care Test for Syphilis

    Get PDF
    One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots–based method reached up to 100% (95% confidence interval [CI], 91–100%), while those of the colloidal gold-based method were 82% (95% CI, 68–91%) and 100% (95% CI, 91–100%), respectively. In addition, the naked-eye detection limit of quantum dot–based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold–based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening

    Safety and Efficacy of Dihydroartemisinin-Piperaquine in Falciparum Malaria: A Prospective Multi-Centre Individual Patient Data Analysis

    Get PDF
    BACKGROUND: The fixed dose antimalarial combination of dihydroartemisinin-piperaquine (DP) is a promising new artemisinin-based combination therapy (ACT). We present an individual patient data analysis of efficacy and tolerability in acute uncomplicated falciparum malaria, from seven published randomized clinical trials conducted in Africa and South East Asia using a predefined in-vivo protocol. Comparator drugs were mefloquine-artesunate (MAS3) in Thailand, Myanmar, Laos and Cambodia; artemether-lumefantrine in Uganda; and amodiaquine+sulfadoxine-pyrimethamine and artesunate+amodiaquine in Rwanda. METHODS AND FINDINGS: In total 3,547 patients were enrolled: 1,814 patients (32% children under five years) received DP and 1,733 received a comparator antimalarial at 12 different sites and were followed for 28-63 days. There was no significant heterogeneity between trials. DP was well tolerated with 1.7% early vomiting. There were less adverse events with DP in children and adults compared to MAS3 except for diarrhea; ORs (95%CI) 2.74 (2.13 to 3.51) and 3.11 (2.31 to 4.18), respectively. DP treatment resulted in a rapid clearance of fever and parasitaemia. The PCR genotype corrected efficacy at Day 28 of DP assessed by survival analysis was 98.7% (95%CI 97.6-99.8). DP was superior to the comparator drugs in protecting against both P.falciparum recurrence and recrudescence (P = 0.001, weighted by site). There was no difference between DP and MAS3 in treating P. vivax co-infections and in suppressing the first relapse (median interval to P. vivax recurrence: 6 weeks). Children under 5 y were at higher risk of recurrence for both infections. The proportion of patients developing gametocytaemia (P = 0.002, weighted by site) and the subsequent gametocyte carriage rates were higher with DP (11/1000 person gametocyte week, PGW) than MAS3 (6/1000 PGW, P = 0.001, weighted by site). CONCLUSIONS: DP proved a safe, well tolerated, and highly effective treatment of P.falciparum malaria in Asia and Africa, but the effect on gametocyte carriage was inferior to that of MAS3

    Multicentric assessment of the efficacy and tolerability of dihydroartemisinin-piperaquine compared to artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The choice of appropriate artemisinin-based combination therapy depends on several factors (cost, efficacy, safety, reinfection rate and simplicity of administration). To assess whether the combination dihydroartemisinin-piperaquine (DP) could be an alternative to artemether-lumefantrine (AL), the efficacy and the tolerability of the two products for the treatment of uncomplicated falciparum malaria in sub-Saharan Africa have been compared.</p> <p>Methods</p> <p>A multicentric open randomized controlled clinical trial of three-day treatment of DP against AL for the treatment of two parallel groups of patients aged two years and above and suffering from uncomplicated falciparum malaria was carried out in Cameroon, CĂŽte d'Ivoire and Senegal. Within each group, patients were randomly assigned supervised treatment. DP was given once a day for three days and AL twice a day for three days. Follow-up visits were performed on day 1 to 4 and on day 7, 14, 21, 28 to evaluate clinical and parasitological results. The primary endpoint was the recovery rate by day 28.</p> <p>Results</p> <p>Of 384 patients enrolled, 197 were assigned DP and 187 AL. The recovery rates adjusted by genotyping, 99.5% in the DP group and 98.9% in the AL group, were not statistically different (p = 0.538). No Early Therapeutic Failure (ETF) was observed. At day 28, two patients in the DP group and five in AL group had recurrent parasitaemia with <it>Plasmodium falciparum</it>. In the DP group, after PCR genotyping, one of the two recurrences was classified as a new infection and the other as recrudescence. In AL group, two recurrences were classified after correction by PCR as recrudescence. All cases of recrudescence were classified as Late Parasitological Failure (LPF). In each group, a rapid recovery from fever and parasitaemia was noticed. More than 90% of patients did no longer present fever or parasitaemia 48 hours after treatment. Both drugs were well tolerated. Indeed, no serious adverse events were reported during the follow-up period. Most of the adverse events which developed were moderate and did not result in the treatment being stopped in either treatment group.</p> <p>Conclusions</p> <p>Dihydroartemisinin-piperaquine was as effective and well-tolerated as artemether-lumefantrine in the treatment of uncomplicated falciparum malaria. In addition, dihydroartemisinin-piperaquine, a single daily dose, could be an advantage over artemether-lumefantrine in Africa because of better treatment observance.</p

    Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli

    Get PDF
    The use of carbon nanoparticles is shown for the detection and identification of different Shiga toxin-producing Escherichia coli virulence factors (vt1, vt2, eae and ehxA) and a 16S control (specific for E. coli) based on the use of lateral flow strips (nucleic acid lateral flow immunoassay, NALFIA). Prior to the detection with NALFIA, a rapid amplification method with tagged primers was applied. In the evaluation of the optimised NALFIA strips, no cross-reactivity was found for any of the antibodies used. The limit of detection was higher than for quantitative PCR (q-PCR), in most cases between 104 and 105 colony forming units/mL or 0.1–0.9 ng/ÎŒL DNA. NALFIA strips were applied to 48 isolates from cattle faeces, and results were compared to those achieved by q-PCR. E. coli virulence factors identified by NALFIA were in very good agreement with those observed in q-PCR, showing in most cases sensitivity and specificity values of 1.0 and an almost perfect agreement between both methods (kappa coefficient larger than 0.9). The results demonstrate that the screening method developed is reliable, cost-effective and user-friendly, and that the procedure is fast as the total time required is <1 h, which includes amplification

    Reduction in the proportion of fevers associated with Plasmodium falciparum parasitaemia in Africa: a systematic review

    Get PDF
    BACKGROUND: Malaria is almost invariably ranked as the leading cause of morbidity and mortality in Africa. There is growing evidence of a decline in malaria transmission, morbidity and mortality over the last decades, especially so in East Africa. However, there is still doubt whether this decline is reflected in a reduction of the proportion of malaria among fevers. The objective of this systematic review was to estimate the change in the Proportion of Fevers associated with Plasmodium falciparum parasitaemia (PFPf) over the past 20 years in sub-Saharan Africa. METHODS: Search strategy. In December 2009, publications from the National Library of Medicine database were searched using the combination of 16 MeSH terms.Selection criteria. Inclusion criteria: studies 1) conducted in sub-Saharan Africa, 2) patients presenting with a syndrome of 'presumptive malaria', 3) numerators (number of parasitologically confirmed cases) and denominators (total number of presumptive malaria cases) available, 4) good quality microscopy.Data collection and analysis. The following variables were extracted: parasite presence/absence, total number of patients, age group, year, season, country and setting, clinical inclusion criteria. To assess the dynamic of PFPf over time, the median PFPf was compared between studies published in the years ≀2000 and &gt; 2000. RESULTS: 39 studies conducted between 1986 and 2007 in 16 different African countries were included in the final analysis. When comparing data up to year 2000 (24 studies) with those afterwards (15 studies), there was a clear reduction in the median PFPf from 44% (IQR 31-58%; range 7-81%) to 22% (IQR 13-33%; range 2-77%). This dramatic decline is likely to reflect a true change since stratified analyses including explanatory variables were performed and median PFPfs were always lower after 2000 compared to before. CONCLUSIONS: There was a considerable reduction of the proportion of malaria among fevers over time in Africa. This decline provides evidence for the policy change from presumptive anti-malarial treatment of all children with fever to laboratory diagnosis and treatment upon result. This should insure appropriate care of non-malaria fevers and rationale use of anti-malarials

    Malaria pigment crystals as magnetic micro-rotors: Key for high-sensitivity diagnosis

    Get PDF
    The need to develop new methods for the high-sensitivity diagnosis of malaria has initiated a global activity in medical and interdisciplinary sciences. Most of the diverse variety of emerging techniques are based on research-grade instruments, sophisticated reagent-based assays or rely on expertise. Here, we suggest an alternative optical methodology with an easy-to- use and cost-effective instrumentation based on unique properties of malaria pigment reported previously and determined quantitatively in the present study. Malaria pigment, also called hemozoin, is an insoluble microcrystalline form of heme. These crystallites show remarkable magnetic and optical anisotropy distinctly from any other components of blood. As a consequence, they can simultaneously act as magnetically driven micro-rotors and spinning polarizers in suspensions. These properties can gain importance not only in malaria diagnosis and therapies, where hemozoin is considered as drug target or immune modulator, but also in the magnetic manipulation of cells and tissues on the microscopic scale
    • 

    corecore